National Geographic News
A photo of a father and son on a pilgrimage around Mount Kailas in Tibet.

A Tibetan father and son undertake a pilgrimage around Mount Kailas.

Photograph by Lynn Johnson, National Geographic Creative

Brandon Keim

for National Geographic

Published July 2, 2014

One of the most remarkable human adaptations has an origin that's not precisely human.

The physiological ability of ethnic Tibetans to thrive at miles-high elevations, unaffected by oxygen levels that leave lowlanders gasping, appears to have originated with Denisovans, a close relative of Neanderthals.

Following on the news earlier this year that many modern humans have quite a bit of Neanderthal DNA, the finding is the latest example of the complex anthropological tapestry that is our genome. It also hints at a perhaps underappreciated reason for Homo sapiens' tremendous success: After leaving Africa, our ancestors picked up traits from the locals.

"Maybe this happened many times throughout human history, and we just happened to detect it this time," said computational biologist Rasmus Nielsen of the University of California, Berkeley. "It suggests that getting genes from other species might have been important to our evolution."

Nielsen's group published their findings Wednesday in Nature.

A Gene for High-Altitude Living

In an earlier study, Nielsen and colleagues observed that modern Tibetans have a different form of a gene called EPAS1, which is involved in a metabolic pathway that regulates the body's response to low-oxygen conditions. Though the researchers don't know exactly how that mutation operates, they suspect it plays an important role in the ability of Tibetans to thrive at high altitudes.

When people from places nearer to sea level become acclimatized to mountain altitudes, their bodies adapt by increasing the amount of hemoglobin in the blood. In Tibetans, though, hemoglobin doesn't increase as much, which may help them avoid the cardiac problems associated with high levels of the oxygen-carrying protein.

Tibetan women have further advantages. They are less susceptible to high blood pressure during pregnancy and have less difficulty giving birth at high altitudes than other women.

But the high concentration of the EPAS1 mutation among Tibetans didn't fit with known patterns of human migration, says Nielsen. Nobody could figure out where the gene came from.

Enter the Denisovans, a Homo species first identified from bone fragments found in 2010 in a cave in southern Siberia. Though tiny, those fragments yielded a near-complete genome.

In the new study, Nielsen's group compared DNA from 40 Tibetans and 40 Han—the dominant ethnic group in China—with the Denisovan genome. The Denisovan EPAS1 gene, they found, almost completely matches the one found in Tibetans.

"The probability of getting a pattern like this with no introgression," said Nielsen, using the technical term for genes from one species moving into another through interbreeding, "is zero."

Humans and Denisovans likely interbred 30,000 to 40,000 years ago, Nielsen said. There didn't need to be much mixing—just enough to add a bit of Denisovan DNA to the local human gene pool. Then, as humans moved onto the Tibetan plateau, the Denisovans' EPAS1 mutation likely proved useful and was so strongly favored by natural selection that it's now widespread among the people in that region.

A photo of the excavation site of Denisova Cave in Siberia.
The Denisovan fossils were found in this cave in southern Siberia, where Russian student Zoya Gudkova takes a break from digging. Neanderthals and modern humans also lived there tens of thousands of years ago.
Photograph by Robert Clark, National Geographic

Meeting the Locals

Svante Pääbo, an evolutionary geneticist at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, whose group originally sequenced the DNA in the Denisovan fossils, agreed with the results of the new study. "It shows that one of the most spectacular cases of adaptation in humans has its roots in Denisovans," said Pääbo.

It's not yet clear, however, that the EPAS1 gene worked in the same way in Denisovans as it does in Tibetans, said paleoanthropologist Chris Stringer of London's Natural History Museum. Nevertheless, the finding "provides yet another example of the patchwork additions that were made to our genome following interbreeding events with our ancient relatives," he said.

Nielsen suspects this scenario played out many times in prehistory, allowing modern humans—who left Africa an estimated 60,000 years ago, an evolutionary eyeblink—to adjust rapidly to new surroundings. "Instead of waiting for mutations to arise, we mate with the locals who are already adapted," he said.

There may have been cultural introgression, too. It's quite likely that humans picked up not only new genetic mutations but also new knowledge, Nielsen said. For now, though, we only know of the genetic evidence that survived.

"Gene flow from archaic humans has been important for the physiology of present-day humans," said Pääbo. "Probably more examples of this will be found in the future."

10 comments
Aseem Johri
Aseem Johri

Can anybody correct the name in the title of the photo.  It is Kailash, not Kailas.

Gord Bolton
Gord Bolton

Perhaps rumors of their extinction have been somewhat exagerated!

Peter Barlas
Peter Barlas

Very interesting I love stuff about real futuristic things & we have to evolve & get more clever from things we have encountered from the people who repeted things over & over again must learn & in influence our noledge in the future

Philip Olson
Philip Olson

Years ago, before the Denisovan's genome was found, the high altitude gene was lauded as one of the very few mutations Sapiens had acquired since leaving Africa.  Most mutations consist of differences in activation and duration.  This mutation actually encoded new protein, very rare in our species.

Considering Sapien's recent splitting and the time required to integrate new genes this interspecies mingling is likely to be the source of most new sequences in the human genome.  Studies show Sapiens among the least varied genomes of all species on the planet.

I await further study of the people living in high altitude in the south America continent.  What measures account for their survival?

kim Robson
kim Robson

Sumerian Tablets may give another clue


Ali B.
Ali B.

so that like the fish that have gene for living in wather

hai on
hai on

love the photo. they are traversing mountains and snow in tennis shoes. the father has converse(?) on.  the rifle is probably a classic.

Barbara Fleming
Barbara Fleming

Is a similar mutation found in the Inca who live at high elevations in the Andes? Has anyone looked for it there?

John Farrelly
John Farrelly

@Philip Olson You might want to read about Eero Mantyranta, the Finnish cross country skier in David Epstein's book, The Sports Gene. He confounds the living at altitude of Andeans and Tibetans. 

Share

Popular Stories

The Future of Food

See more food news, photos, and videos »