Tiny Radio Tags Offer Rare Glimpse into Bees' Universe

<< Back to Page 1   Page 2 of 2

Wikelski, a 2008 National Geographic Emerging Explorer and director of the Max Planck Institute of Ornithology in Seewiesen, Germany, has long pushed the frontiers of tracking small animals.

He previously used radio tags to make breakthrough discoveries showing that songbird and dragonfly migration patterns are remarkably similar: They take advantage of favorable winds, take rest breaks, and reorient themselves when they lose their bearings. He found one dragonfly that flew a whopping 100 miles (160 kilometers) in a single day.

Lightweight Class

In the bee-tracking project, Wikelski and his colleagues are using transmitters the size of three or four grains of rice, powered by a tiny hearing-aid battery and with a crystal-controlled oscillator and an antenna measuring up to an inch and a half.

The transmitters, at a featherweight 0.006 ounces (170 milligrams), are small and light enough to attach to the backs of bees from two relatively hefty species, weighing .02 ounces (600 milligrams), with just a bit of eyelash glue and superglue.

Even loaded up with these backpacks, nearly a third of their body weight, "they fly beautifully," says Wikelski.

The transmitters allow the scientists to track the insects as long as the bees remain within a few miles of their receiver. So far Wikelski and his team have fitted tags on orchid bees at Panama's Smithsonian Tropical Research Institute and conducted successful indoor tests in a New Jersey lab with North America's biggest bee species, the carpenter bee.

These early tests are proof of concept. Most bees are much smaller than orchid and carpenter bees. In fact, many wild bee species are the size of just a pine nut.

Winfree says the team tried to fit transmitters on bumblebees, but these .007-ounce (200 milligram) insects simply couldn't carry the load, which amounted to about 80 percent of their body weight.

"You'd throw them up into the air, and they'd just come back to the ground," she says. "So we need a next generation of transmitters for them, I think."

For now, Wikelski says, the radio tags for the carpenter bees are as small as current technology allows. But he thinks they can be made even smaller and hopes his engineering colleague James Cochran, who made the 170-milligram tags, will be able to shrink them by another 40 percent or so—down to just 100 milligrams.


Smaller tracking tags like this may eventually help scientists address growing concerns about the future production of crops such as apples, melons, and almonds that require bees for pollination.

Even though domesticated honeybee colonies, which currently pollinate most U.S. crops, are mysteriously collapsing, native wild bees appear unaffected by the so-called colony collapse disorder.

(See related: "Can Wild Bees Take Sting From Honeybee Decline?" [October 20, 2004].)

Studies by Winfree and Claire Kremen, a conservation biologist at the University of California, Berkeley, have shown that in some cases, native bees alone can fully pollinate crops.

This means there's reason for hope if the honeybee species vanish, though native bees could never completely replace domesticated ones in most of the farming operations that currently depend on them.

One key will be to maintain native bee habitats within range of crops needing the bees' services. And that requires understanding how far bees will fly to feed on the crops, notes Winfree. "Putting a transmitter on these species and seeing where they go and how far is obviously the way to nail that."

Tiny tracking tags should eventually enable scientists to tackle a laundry list of other questions, including how bees and other pollinators interact with flowering plants in rain forests and how to design agricultural landscapes to attract and sustain native bees.

Tracking studies may eventually help confirm a hypothesis that bees, like most animals, move only as far as the nearest food source—even if they have the ability to fly farther.

Scott Hoffman Black, executive director of the Xerces Society for Invertebrate Conservation, an organization based in Portland, Oregon, that advocates for the protection of pollinators, says tagging bees in food-rich and food-poor landscapes may lead to better, more efficient uses of farmland.

For now, all these possibilities remain to be explored. But, says Wikelski, "We're at the verge of something very exciting." And much of this growing understanding of bees and other vital pollinators will be thanks to the amazing shrinking technology of the radio tag.

<< Back to Page 1   Page 2 of 2




NEWS FEEDS     After installing a news reader, click on this icon to download National Geographic News's XML/RSS feed.   After installing a news reader, click on this icon to download National Geographic News's XML/RSS feed.

Get our news delivered directly to your desktop—free.
How to Use XML or RSS

National Geographic Daily News To-Go

Listen to your favorite National Geographic news daily, anytime, anywhere from your mobile phone. No wires or syncing. Download Stitcher free today.
Click here to get 12 months of National Geographic Magazine for $15.