Legendary Swords' Sharpness, Strength From Nanotubes, Study Says

<< Back to Page 1   Page 2 of 2

The bundles run parallel to the blade's surface and may help larger particles of cementite arrange in layers. These hard layers, which have softer steel in between, could help explain how the steel remains strong yet flexible.

This combination of strength and flexibility makes the steel ideal for forging swords.

The blades were generally made from metal ingots prepared in India using special recipes, which probably put just the right amount of carbon and other impurities into the iron (India map).

By following these recipes and following specific forging techniques, "craftsmen ended up making nanotubes more than 400 years ago," Paufler and his colleagues write.

When these blades were nearly finished, blacksmiths would etch them with acid. This brought out the wavy light and dark lines that make Damascus swords easy to recognize.

But it could also give the swords their sharpness, Paufler says. Because carbon nanotubes are resistant to acid, they would protect the nanowires, he theorizes.

After etching, many of these nanostructures could stick out from the blade's edge, giving it tiny saw-like teeth.

Skeptical Smiths

The techniques for making the steel were lost around A.D. 1700. But many researchers are studying how to recreate the blades—even though metallurgical experts warn that the blades, though exceptional for their time, are far outperformed by modern steels.

While some scientists have claimed success, others dispute that the reproductions are truly the same as the originals.

And many experts doubt that the new findings will clear things up.

John Verhoeven, a metallurgist at Iowa State University at Ames who has worked on reproducing the Damascus sword-making techniques, is skeptical that Paufler and his colleagues have cracked the secret of Damascus blades.

"I don't think that [the nanowires] are anything unusual," Verhoeven said. "I think those structures would be found in normal steels."

The Damascus sword is also an example of how unexpected nanosize structures can show up in materials—and sometimes give them surprising properties, experts say.

But not all these nanoproperties are good. Asbestos, for example, comes in needle-like particles that cause severe lung disease. Break these particles into shorter pieces, and they much less harmful.

Because of nanomaterials' unpredictable behavior, several researchers asked in an article published today in Nature for more studies of these materials and their potential side effects.

Free Email News Updates
Best Online Newsletter, 2006 Codie Awards

Sign up for our Inside National Geographic newsletter. Every two weeks we'll send you our top stories and pictures (see sample).

<< Back to Page 1   Page 2 of 2




NEWS FEEDS     After installing a news reader, click on this icon to download National Geographic News's XML/RSS feed.   After installing a news reader, click on this icon to download National Geographic News's XML/RSS feed.

Get our news delivered directly to your desktop—free.
How to Use XML or RSS

National Geographic Daily News To-Go

Listen to your favorite National Geographic news daily, anytime, anywhere from your mobile phone. No wires or syncing. Download Stitcher free today.
Click here to get 12 months of National Geographic Magazine for $15.