Hottest Life-Form Found: Microbe Thrives When Boiling

<< Back to Page 1   Page 2 of 2

The sample was then sent to Lovley's lab at the University of Massachusetts, where, in an attempt to isolate microbes that grow on iron, they discovered Strain 121.

Lovley and his colleagues have yet to formally name Strain 121, a process that requires publication of the name in a peer-reviewed scientific journal. To have the paper accepted, two cultures of the strain must be publicly available.

"The problem is, culture collections are not able to deal with" the rigors of handling, he said. Strain 121 is a novel-type of organism: It uses iron to get energy from its food in the same manner that we humans use oxygen to get energy from our food.

Chemically, Strain 121's respiration process reduces ferric iron to ferrous iron and forms the mineral magnetite, the source of most of the magnetic material deposited on Earth some two billion years ago.

Though Lovley is a master of isolating and growing such iron-loving microbes, Cary said the task is very difficult to do and few people can match Lovley's expertise.

"Extremophiles are difficult to grow," Cary said. "They are living under very specific constraints, environmental and nutrient constraints, and getting it just right is very hard. … [Lovley] had a system that was very constrained, and he was able to pull these bugs out."

Strain 121 is an archaean, a single-celled microbe similar to but not quite like bacteria. Archea often live in extreme environments, such as extreme heat, cold, salinity, or acidity.

"Archaea" literally means "ancient." The organisms are so named because they split from the tree of life close to the roots.

Taking the Heat

Lovley and his colleagues are currently attempting to sequence the genome of Strain 121 in order to understand how the microbe is able to survive temperatures above the sterilization threshold of 121 degrees Celsius.

"In general, the factors that allow organisms to grow at high temperatures are not well understood," Lovley said.

Jan Amend, a microbial geochemist at Washington University in St. Louis, believes Strain 121 is just "one of many microbes" that can survive at such high temperature. He doesn't think the survival skill of Strain 121 "is anything super out of the ordinary."

"Like every living organism, it requires carbon, nutrients, energy, water, and a few other things that all of life requires," he said. Strain 121, he added, has happened to adapt to a hot environment and energy source of ferric iron.

Cary said that what is amazing about microbes such as Strain 121 is that their DNA holds together, replicates, and functions at temperatures that cause most other known organisms to wilt.

"It is mind-boggling. We are just now getting to a place to understand the intricacies of thermal adaptations," he said.

According to Cary, microbes such as Strain 121 likely have a suite of adaptations at the genetic level that allow them to survive. "These guys have been on the planet for 3.5 billion years. They've had a heck of a long time to figure it out," he said.

<< Back to Page 1   Page 2 of 2




NEWS FEEDS     After installing a news reader, click on this icon to download National Geographic News's XML/RSS feed.   After installing a news reader, click on this icon to download National Geographic News's XML/RSS feed.

Get our news delivered directly to your desktop—free.
How to Use XML or RSS

National Geographic Daily News To-Go

Listen to your favorite National Geographic news daily, anytime, anywhere from your mobile phone. No wires or syncing. Download Stitcher free today.
Click here to get 12 months of National Geographic Magazine for $15.