Artificial Volcanoes Created in New York Lab

<< Back to Page 1   Page 2 of 2

For the scientists the initial challenge is to recover samples of the magma, which provide essential clues to interpret eruptions. Webster collected rock samples at Mount Vesuvius last year.

Mandeville focused on the volcanic fallout around Mount Mazama in Crater Lake, Oregon. About 7,600 years ago, Mount Mazama erupted explosively, ejecting 50 cubic kilometers (12 cubic miles) of debris over an area of one million square kilometers (400,000 square miles).

Back in the lab, Mandeville slices the samples—in this case, glassy pieces of rock—in search of so-called "melt inclusions," microscopic pockets of magma sealed in volcanic rock.

Time Capsules

Inclusions are time capsules that reveal the chemical signature of the magma before the eruption. Within the sample slices, an electron microprobe detects silica and other components, and infrared spectroscopy measures water and carbon dioxide.

The process, Mandeville said, "is like looking at a champagne bottle before you open the cork, when all the gases are still dissolved."

"These melt inclusions are the only direct evidence of the type of gas powering ancient and modern eruptions," Lowenstern said. "If you want to model how eruptions occur, you need to know how the gas is distributed."

Taking what Mandeville has learned about the chemistry of the inclusions, Webster brews ancient magmas. He packs a tiny gold capsule with pulverized rock from Mount Vesuvius and other gases determined to be present in the original magma.

The capsule then goes into an internally heated pressure vessel that the scientists affectionately call the "bomb." The bomb simulates heat and pressure of magma within the Earth. At Mount Vesuvius, the temperature in the magma chamber just prior to eruption reached 1,000° to 1,100° Celsius (1800° to 2,000° Fahrenheit); the pressure, 22,000 pounds per square inch, the equivalent of six kilometers (four miles) underground.

Predicting the Bang

By manipulating temperatures and pressures inside the bomb, Webster and Mandeville can gauge how the magma may behave in an eruption.

Around the world, scientists closely monitor active volcanoes with satellites and ground instruments. "Monitoring can reveal how much gas is emitted," Lowenstern said, "but that doesn't give you any clues where this gas came from"—the magma or other sources.

For example, magma chambers often heat nearby subterranean water supplies, generating steam, which pours from the volcano and nearby regions. But a satellite cannot distinguish between steam from hydrothermal sources and steam emerging directly from the magma.

"Webster and Mandeville's work tries to address how much gas is in the magma, and how this affects the explosive potential," said Charles Bacon, a USGS volcanologist in Menlo Park, California.

The scientists hope that their findings will correlate with the gas emissions that satellites and ground instruments detect on the slopes of active volcanoes. Thus volcanologists may improve their predictions—not only when an eruption will occur but how big the bang will be.

National Geographic Today, 7 p.m. ET/8 p.m. PT in the United States, is a daily news journal available only on the National Geographic Channel. Click here to learn more about it.

Got a high-speed connection? Watch National Geographic Today in streaming video.

<< Back to Page 1   Page 2 of 2




NEWS FEEDS     After installing a news reader, click on this icon to download National Geographic News's XML/RSS feed.   After installing a news reader, click on this icon to download National Geographic News's XML/RSS feed.

Get our news delivered directly to your desktop—free.
How to Use XML or RSS

National Geographic Daily News To-Go

Listen to your favorite National Geographic news daily, anytime, anywhere from your mobile phone. No wires or syncing. Download Stitcher free today.
Click here to get 12 months of National Geographic Magazine for $15.