Fruit Flies Highlight Aerodynamics of Insect Flight

<< Back to Page 1   Page 2 of 2

Using three high-speed infrared video cameras, the researchers filmed fruit flies in an enclosed arena flying towards a cylinder laced with a drop of vinegar. As the flies approached the cylinder, it loomed in their field of view, triggering a rapid turn that helped them avoid a collision.

These rapid turns were captured by the three cameras, allowing the researchers to analyze in three-dimensions the wing and body position of the flies as they executed the turns. The team determined that fruit flies perform banked turns similar to those observed in larger flies and hummingbirds, which must overcome inertia.

If friction dominated the turn, flies would have to continuously use their wings to generate torque during the entire turn to overcome the viscosity of the air. Otherwise the momentum of the turn would halt, the scientists said.

Dickinson likens such a scenario to trying to spin a toy top in vat of honey. "As long as you work to move it, it would move, but the moment you let go it would stop," he said.

Instead, to execute a turn, a fruit fly generates torque to accelerate into the turn and then the fly has to actively counteract the inertia of the turn by producing torque in the opposite direction, bringing the rotation of the body to a halt, according to the scientists. Once the flies have achieved their desired turn angle, they buzz off.

"In some ways it flies like a helicopter," said Fry. "It has to adjust its body orientation in space and does so using subtle changes in wing motion."

To make sure their measured patterns of wing motion were sufficient to explain the rapid turning ability of the fly, the researchers played the sequences through a dynamically-scaled robotic model, whimsically named Bride of Robofly. The robot does not fly, but rather is a larger version of a fly's wings that flap in a tank of mineral oil, allowing the scientists to measure the forces on the wing.

The researchers found that their calculations of the flies' movements based on their observation from the three-dimensional video matched well with the calculations they derived from the wing motion of the robot.

"Through use of the scaled robot fly model in the oil tank, they have quantified the resulting change in forces due to these small motion changes," said Fearing.

Flying Robotic Flies

The research provides insight to the lightening-quick control mechanisms that are active in flies, demonstrating that flies are able to control changes in their body orientation within just a few wing beats, said Fry.

"A fly's wing flaps at 200 wings beats per second," he said. "The control has to be similarly fast."

Insights into the control mechanisms of the fly will help researchers build a robot that flies like a fly. Such potential robots would be highly prized for search and rescue, spying, and surveillance operations by the U.S. military, which is funding Fearing's robotic fly work at the University of California at Berkeley.

A summary of the research by Fry, Sayaman, and Dickinson appeared Friday in Science, the journal of the American Association for the Advancement of Science.

<< Back to Page 1   Page 2 of 2




NEWS FEEDS     After installing a news reader, click on this icon to download National Geographic News's XML/RSS feed.   After installing a news reader, click on this icon to download National Geographic News's XML/RSS feed.

Get our news delivered directly to your desktop—free.
How to Use XML or RSS

National Geographic Daily News To-Go

Listen to your favorite National Geographic news daily, anytime, anywhere from your mobile phone. No wires or syncing. Download Stitcher free today.
Click here to get 12 months of National Geographic Magazine for $15.