Microscopic Litter Bugs Are Focus of Global Study

<< Back to Page 1   Page 2 of 2

"Soil is vital to ecosystem," said Dangerfield. "The question is, how much biodiversity is needed in the soil to have it work—as a filter for toxins, as a nutrient recycler, and as a water filter?"

Getting a "Signature"

The scientists are not interested primarily in classifying different mites in a sample, for example, as a taxonomist might do. Instead, they want to find out how many different species are represented in soil from a particular ecosystem and what those species are—essentially, the "biodiversity signature" of a given environment, said Dangerfield.

The signatures should help scientists identify exactly what organisms are associated with fertile soil and which are missing from less arable soils.

So far, BioTrack has received vials from the United States, United Kingdom, Canada, Australia, Russia, Taiwan, Brazil, Namibia, Germany, and Burkina Faso. Samples from five of these countries have been analyzed and contain about 17,000 organisms, possibly representing thousands of species, said Dangerfield.

Taxonomy is a long and laborious task, requiring painstaking work to classify plant and animals. BioTrack's identification process, however, is relatively rapid.

The organisms that Dangerfield's lab is working to pinpoint in the contents of a vial are typically only about a half to one millimeter long. Once detected with a microscope, they are photographed to produce high-resolution 3-D digital images.

The magnification is so high that it's possible to see every hair on one of these microscopic creatures, which is important because an extra bristle here or there could indicate a different species.

Then comes the sorting process, for which the digital images are crucial. As new samples arrive, the contents of the vials are compared with those of other samples already recorded with pictures in the database. Dangerfield hopes to put this data on the Web so anyone around the world could access the images for comparison with the organisms in local soils.

Toward Baseline Biodiversity

"GLIDE will be particularly useful for introducing a baseline biodiversity for many regions," said Brian Boag, a soil ecologist at the Scottish Crop Research Institute in Dundee.

Knowing the baseline biodiversity of a region will make it easier to measure the impacts of invasive species or human activities, said Boag.

His research has included studies of how the invasive New Zealand flatworm has affected the ecology of soil in Scotland and Northern Ireland, where the worm has displaced native earthworm populations and had a dramatic impact on farmland.

The New Zealand flatworm has infested 70 percent of Northern Ireland in just over a decade. Without the native earthworms, which are important in churning up soil and aiding the cycling of nutrients, many areas of land have become waterlogged and filled with plants that thrive in wet conditions.

Biological components of soil also play a major role in some soil problems, like salinity, that have been viewed as largely the result of chemical and physical changes.

In many regions of Australia, for example, salt buildup from irrigation is a widespread problem for farmers because most plants will not grow in highly saline soils. Heavy irrigation also drowns many common soil organisms. The loss of these creatures amplifies the effects of the salt, which remains concentrated in the top layer of the soil, said Dangerfield.

Similarly, heavy application of inorganic fertilizer kills a large proportion of soil biodiversity. As the number of soil organisms decreases, so does the rate of decomposition; this, in turn, reduces the amount of nutrients, making the soil less fertile, said Dangerfield. Farmers then become even more dependent on chemical fertilizers.

"We need to know how to restore soil," said Wall, "but without knowing what creatures are present, it is hard to say how to improve soil biology."

Dangerfield believes that BioTrack's primary customers will eventually be farmers and forestry officials, who critically need to understand the nature of soil in certain ecosystems. "We hope to match the biodiversity on different farms with different soil management practices, then see which 'signature' is most beneficial," said Dangerfield.

National Geographic Today, 7 p.m. ET/PT in the United States, is a daily news magazine available only on the National Geographic Channel. Click here to request it.

For more information about the Global Litter Invertebrate Decomposition Experiment (GLIDE) program, visit their Web site at http://www.nrel.colostate.edu/projects/glide/index.html.

<< Back to Page 1   Page 2 of 2




NEWS FEEDS     After installing a news reader, click on this icon to download National Geographic News's XML/RSS feed.   After installing a news reader, click on this icon to download National Geographic News's XML/RSS feed.

Get our news delivered directly to your desktop—free.
How to Use XML or RSS

National Geographic Daily News To-Go

Listen to your favorite National Geographic news daily, anytime, anywhere from your mobile phone. No wires or syncing. Download Stitcher free today.
Click here to get 12 months of National Geographic Magazine for $15.