National Geographic Daily News
raw diamonds

Diamonds may be in the sky—literally.


Andrew Fazekas

National Geographic

Published October 9, 2013

It sounds like science fiction, but as much as 10 million tons of diamonds may be stored in Saturn and Jupiter, researchers announced this week.

Observational evidence of storms on Saturn that actively generate carbon particles, combined with new laboratory experiments and models that show how carbon behaves under extreme conditions, have led a pair of scientists to posit that both planets may offer stable environments for the formation of diamonds.

(Related: "Saturn's Rings Hit by Meteor Shower.")

"We now know the high temperature limit [8,000 Kelvin] for solid diamond, above which it melts. And we also now have more precise pressure [and] temperature structures for the interiors of Saturn and Jupiter," said Kevin Baines, a planetary scientist at University of Wisconsin–Madison and co-author of the study presented this week at a conference in Denver, Colorado.

"These two results together show us for the first time that solid diamonds can exist over large vertical regions of both planets."

Earlier theories included only Uranus and Neptune as suspected diamond producers. Scientists suggested that intense temperature and pressure on those planets may be able to convert atmospheric methane gas directly into diamonds, which rain down into their interiors.

Jupiter and Saturn, which are presumed to have much lower temperatures and less methane, have traditionally not been associated with the capacity to form these precious gems.

About half of one percent of Saturn's atmosphere is methane. Jupiter has only about 0.2 percent. On Uranus and Neptune, however, close to 15 percent of the atmosphere is made up of the gas.

Giant lightning storms spotted by Cassini spacecraft in the upper clouds of Saturn—similar storms have been seen on Jupiter—may be the key events that spark the production of diamonds, according to Baines.

Dark stormy regions seen on infrared images are thought to correspond to the breakup of methane molecules into carbon, most probably soot particles.

Once formed, the new theory states, noncrystalline carbon sinks down through the atmosphere until it reaches an altitude of similar density and is converted to graphite under the increasing pressure. The graphite continues its descent into the deeper depths of Saturn's atmosphere until pressure and temperature builds and converts the material into solid diamonds.

"This creates about a thousand tons of diamonds per year, and I estimate that in the 30,000-kilometer-thick diamond-containing layer, there are about 10 million tons of diamonds formed in this manner," said Baines.

Liquid Diamond Seas

At the greatest depths of Jupiter's atmosphere, the conditions are so extreme that the gems may actually form an ocean of liquid diamond.

"Below that layer, where the diamonds melt, the atmosphere becomes so hostile with atomized and ionized hydrogen that it is likely that the melted diamond is transformed into other materials.”

The interiors of Uranus and Neptune are much cooler and never reach 8,000 Kelvin, so diamonds on these more distant worlds probably never melt.

"We can therefore say that, most probably, diamonds are forever on Uranus and Neptune but not on Jupiter and Saturn," said Mona Delitsky, a planetary scientist at California Specialty Engineering in Pasadena, California, and lead author of the study.

But planetary scientist William Hubbard, of the University of Arizona, expressed skepticism about the carbon chemistry proposed in this study. He thinks that the amount of soot produced by Saturn's lightning storms is too small for diamond production, and that the soot is most likely destroyed by the increasing pressure and temperature as it wafts down to deeper layers of the atmosphere.

"The pyrolyzed [broken down due to heat] carbon might just form a solution with the hydrogen, and not precipitate out [into diamonds]," said Hubbard.


The possible size of these cosmic diamonds is subject to speculation. Delitsky thinks they may start out one micron in size as lightning-generated soot. Those particles grow as they fall, much like raindrops, into the deeper interior of the planet, eventually forming gems at least pea size, with some growing so large that they could be called "diamondbergs."

"They are probably much larger than nano-diamonds, possibly sizable chunks that you could hold in your hand," she added.

"In the far distant future, robotic probes could possibly mine these diamonds in the deep atmospheres of these gas giants."

The study was presented at the 45th annual meeting of the Division of Planetary Sciences of the American Astronomical Society.

Follow Andrew Fazekas, the Night Sky Guy, on Twitter and Facebook.

chris b
chris b

cool....cheaper diamond prices = shutting a woman up for less money

Emma Vceego
Emma Vceego

wow, diamondbergs, so many diamonds will be astonishingly beautiful. maybe someday there is a rain of diamond.

kisslyn joseph
kisslyn joseph

I  think its pretty cool... but that would cause a lot of chaos.. maybe another world war over those diamonds.. (in the future)

SoccerPro Nelly
SoccerPro Nelly

Sweet I know where my next vacation is going to be !!!!!!!!!!!!!!!!!!!!!!!!!!!

Steve Gonzalez
Steve Gonzalez

Typical human behavior...

Destroy and pillage other worlds because we are sick of our own filthy planet.

Vincent Wang
Vincent Wang

"diamond is forever" not precious, debeers either.

Vincent Wang
Vincent Wang

twinkle twinkle little star, how I wonder what you are, it reminds me of my childhood and the old song.

Gayle Trent
Gayle Trent

Diamonds in the sky!  Where is Lucy?

Shelby Burris
Shelby Burris

Dang, that would be pretty cool to be able to mine for diamonds on other planets.

Swiftright Right
Swiftright Right

Im not going to do the math but Im pretty sure that a zone of diamonds 30,000 km thick would way a heck of alot more than 10,000,000 tons

Earth is about 12,000km and weight about 60000000000000000000000 tons

Keren Bes
Keren Bes

"This creates about a thousand tons of diamonds per year" ,I depend, this is too amazing, but if so diamonds in the future will become common crafts?!

Phillip George
Phillip George

That's a new term for me, the name that could leadway to many adventures, 'Diamonbergs',  Wow Amazing!!

sofia cannon
sofia cannon

If you're looking for an article to use for a school project, this is perfect I used it and my teacher loved it. (6th grade)

Nick Cimillo
Nick Cimillo

@Steve Gonzalez that isn't typical for humans though..... we havn't even left our world for different ones how can we go to jupiter and saturn to pillage them if no human has even set foot on mars? 

Shan G.
Shan G.

@Gayle Trent Speaking of Lucy in the Sky with Diamonds, did you know the Beatles made a reference to LSD. 

L ucy in the S ky with D iamonds 

John Stepanek
John Stepanek

@Shan G. @Gayle Trent Remind any bells? Space Odyssey 2061. Published in 1987, Clarke instilled that Jupiter's core was made of diamond. However, the price of diamonds are only high because of their scarcity. Should the means of transporting them back to Earth be cheap, the price of diamonds would plummet. Still be useful though in industry. 

How to Feed Our Growing Planet

  • Feed the World

    Feed the World

    National Geographic explores how we can feed the growing population without overwhelming the planet in our food series.

See blogs, stories, photos, and news »

The Innovators Project

  • Teen Wonder: Taylor Wilson

    Teen Wonder: Taylor Wilson

    After achieving nuclear fusion at age 14, Taylor, now 19, is working with subatomic particles for solutions to nuclear terrorism and cancer.

See more innovators »


See more posts »

Latest News Video

  • How a T. Rex Packs for a Road Trip

    How a T. Rex Packs for a Road Trip

    The nation's most complete Tyrannosaurus rex specimen is taking a 2,000-mile road trip from Montana to its new home in Washington, D.C.

See more videos »

See Us on Google Glass

Shop Our Space Collection

  • Be the First to Own <i>Cosmos: A Spacetime Odyssey</i>

    Be the First to Own Cosmos: A Spacetime Odyssey

    The updated companion book to Carl Sagan's Cosmos, featuring a new forward by Neil deGrasse Tyson is now available. Proceeds support our mission programs, which protect species, habitats, and cultures.

Shop Now »