National Geographic Daily News
An artist's rendering of a Leonardo Labs' dragonfly showing the electronic backpack that helps scientists study the way it flies.

An artist's rendering of a Leonardo Labs' dragonfly showing the electronic backpack that helps scientists study the way it flies.

Illustration by NGM Art

Helen Fields

for National Geographic

Published October 23, 2013

In a windowless room in northern Virginia, neuroscientist Anthony Leonardo is about to open a door. Quickly. "There are thousands of fruit flies in there, and we don't want them all to escape," he says.

The fruit flies aren't research subjects. They're food. Leonardo studies how dragonflies catch their prey on the wing. To do that, he and his colleagues are working on a new invention: a backpack that can record from a dragonfly's nerve cells while it's chasing a fruit fly.

Leonardo works at the Howard Hughes Medical Institute, which funds scientists like him fully so they don't have to spend time applying for grants or mentoring students. Many are at universities, but Leonardo works at HHMI's research facility, Janelia Farm, in Ashburn, Virginia.

The fruit flies and dragonflies live in a dragonfly flight arena—really, that's what the sign by the door says. It's a brightly lit room kept toasty and humid. To make the dragonflies think they're outside on a warm summer day, the walls are covered with photomurals of an outside landscape—bright yellow flowers in the foreground, bushy evergreen trees in the background. A handful of dragonflies rest on the walls or cameras, occasionally going after a fruit fly.

When the cameras in the room are turned on, Leonardo can record the insects' every move, tracking them as they pull off precision maneuvers with their four wings.

Diagram of dragonfly showing the electronic backpack
Illustration by Matthew Twombly, NGM Art
An artist's rendering of a dragonfly shows an electronic backpack that helps scientists at the Howard Hughes Medical Institute study the way it flies.

Controlling Movement

Intercepting a moving object looks effortless. An outfielder gets his eye on the ball. He runs, he sticks out his glove, and smack! But at the level of the nerve cells, it's really complicated.

"This is a pretty common problem we take for granted," Leonardo says. When you're catching a ball, you're doing two things at once: keeping track of the thing you want and going after it. The dragonfly is tracking the fly's movement—and, at the same time, getting oriented so it can stick out all six legs, lay them on its prey, and jam that tasty fly in its mouth. "We understand very little about how the brain integrates this sensory and motor information," he says.

Leonardo studies this problem in dragonflies, not humans or mice, partly because they're so agile and beautiful, but mostly because they're relatively simple. They have fewer neurons in their brain, which means it's easier to measure what's going on.

For insects, though, dragonflies are pretty big, which means they're relatively easy to work with. For example, you couldn't stick a backpack on a house fly. But that's just what Leonardo and his colleagues are doing with dragonflies.

In his lab upstairs, Leonardo demonstrates how the backpacks are assembled. He glues together the silver wire and carbon fiber that make an antenna, cuts out a little green chip, and glues the assembly together. Later the whole thing is glued onto a dragonfly's shoulders.

Older iterations of the backpack were too heavy; while the dragonflies could fly if prodded, they didn't want to forage and would quickly starve to death. By ditching the teensy battery, Leonardo and his colleagues were able to make the backpack weigh only 40 milligrams, about as much as a couple of grains of rice, and small enough that the dragonflies will forage while they wear it.

The backpack also has a tiny wire leading to probes that hook into individual neurons in the dragonfly equivalent of a spinal cord. "While the animal is performing this sophisticated interception behavior, that little backpack is acting like a radio that's broadcasting the signals from those neurons back to our computer," Leonardo says.

That's the idea, anyway. There's still one hurdle: figuring out exactly how to put the probes in so they won't annoy the dragonflies. "It's like if I'd put a pebble in your shoe and asked you to dance," Leonardo says. His team is still working on how to place the probes so the dragonflies will dance.

Slow Motion

Leonardo has already learned a lot about how dragonflies think just by watching them work. High-speed video cameras show dragonflies and fruit flies converging in slow motion. He's also worked out how to do motion capture on the dragonflies, as if they were being recorded for an animated movie. The researchers stick tiny reflective dots on a dragonfly in several places, and an array of infrared cameras records just how its body bends and turns as it flies.

It seems that the dragonfly catches its prey by keeping the fly in the same place in its visual field and flapping so that it gets closer, which was what people thought—but Leonardo is working out how the way its body works determines how it actually moves.

"Like, if you were driving from D.C. to Boston, you can't drive in a straight line," he says. "There are other constraints that dictate that."

"It's amazing work," says Adrienne Fairhall, a computational neuroscientist at the University of Washington. "We don't have very many examples of small populations of neurons that we can really understand."

Brains are so incredibly complicated—a human brain (see photos) has billions of cells, constantly sending each other signals—that it's rare to figure out the answer to even one question like this one. The backpacks are impressive, too, she says. "It's a wonderful example of being able to push the technology."

7 comments
El Gabilon
El Gabilon

Probes in Dragon Flies....wouldn't a high speed camera accomplish the same thing....that is to say how the fly catches and eats its food. As we recall Howard Hughes let himself go down hill, lived like a hermit and was generally considered nutty as a fruit cake.  Was his condition contagious?  And, are his funds being used wisely.  Shouldn't we be allowed to put probes in human brains.  After all we are just animals.  Now some will think that would be horrible.  The reason we don't allow it is not out of compassion, rather, if we allow it, why it could be me they experiment on.  The latest thats on the table is consideration for providing $10,000 for donating a kidney.  Consider the interruption of the Dragon Flies life style.  Kept in a cage...would we do that to a few thousand humans?We are just saying.."whats good for the gander, should be good for the goose!

Emma Hoppe
Emma Hoppe

@El Gabilon It would seem they have captured the dragonflies with the cameras as you said. The reason for these "backpacks" was to measuring the firing of the neurons in the brain so they could study how the firing translated into the behavior observed on camera. Connecting these two pieces of data is pretty much the point of the experiment and why the tiny sensor backpacks were build. 

darin howard
darin howard

@El Gabilon  We could, very realistically, given your comment, stick the probes in your gray matter...not so many neurons to figure out. 

Share

How to Feed Our Growing Planet

  • Feed the World

    Feed the World

    National Geographic explores how we can feed the growing population without overwhelming the planet in our food series.

See blogs, stories, photos, and news »

The Innovators Project

See more innovators »

Latest News Video

See more videos »

See Us on Google Glass

Shop Our Space Collection

  • Be the First to Own <i>Cosmos: A Spacetime Odyssey</i>

    Be the First to Own Cosmos: A Spacetime Odyssey

    The updated companion book to Carl Sagan's Cosmos, featuring a new forward by Neil deGrasse Tyson is now available. Proceeds support our mission programs, which protect species, habitats, and cultures.

Shop Now »