Slimmer Indian Continent Drifted Ten Times Faster

<< Back to Page 1   Page 2 of 2

Such geological forensics have long revealed that India moved extremely fast to the north after it broke away from Gondwanaland, the supercontinent that dominated the world map 150 million years ago.

Other continents that belonged to Gondwanaland, such as Africa, Antarctica, and Australia, broke apart at the steady pace of 0.8 to 1.6 inches (20 to 40 millimeters) a year.

India sped ahead at about 8 inches (200 millimeters) a year.

"This is the highest speed ever with which any of the continents was ever traveling," study author Kind said.

These four continents' motions created the Indian Ocean between them.

But what enabled India's fast movement was a mystery until now.

Breaking Up is Hard to Do

Kind and his colleagues used seismic waves generated by earthquakes to measure the continents' thickness.

Similarly to how the depth of lakes is studied with sound echoes, the characteristics of seismic waves change as they travel through different materials inside Earth.

The team was able to pinpoint the boundary where the continental lithosphere ends and the more plastic layer beneath it begins, which told them how thick the lithosphere was.

The researchers also devised a theory that Gondwanaland's break-up was triggered by a hot plume of mantle, which created a huge convection current. This slowly pushed the floating continents away from its hot center.

The team suggests that heat originating from this plume was probably responsible for melting off the bottom of India's continental plate, thereby thinning it.

But the University of Sydney's Müller isn't so convinced by that part of the theory.

"It could very well be that Gondwanaland broke up because the mantle got hotter and hotter underneath, but whether that was really driven by a giant mantle plume is a different question," he said.

Müller also isn't certain that this hot plume caused the Indian plate's thinness.

"That the loss of the root coincides with the breakup of Gondwanaland is pure speculation, not supported by observations," he said.

Regardless of what caused India to lose the bottom portion of its continental lithosphere, the result was the same.

"If it hadn't lost its root sometime in the past, it would have not yet collided with Eurasia, and Mount Everest and the entire Tibetan plateau would not exist at all today," Müller said.

Echo of Success

The new measurement technique may also help address many longstanding puzzles in plate tectonics.

That theory was widely adopted in the 1960s, but questions remain about what exactly drives the motion of continental plates, explained Michael Bostock, an earthquake seismologist at the University of British Columbia in Vancouver, Canada.

"These are the sorts of issues that are going to become increasingly clear now that we have methods that allow us to accurately measure the thickness of the tectonic plates," said Bostock, who also was not involved in the study.

Free Email News Updates
Sign up for our Inside National Geographic newsletter. Every two weeks we'll send you our top stories and pictures (see sample).

<< Back to Page 1   Page 2 of 2


SOURCES AND RELATED WEB SITES

ADVERTISEMENT

NATIONAL GEOGRAPHIC'S PHOTO OF THE DAY

NEWS FEEDS     After installing a news reader, click on this icon to download National Geographic News's XML/RSS feed.   After installing a news reader, click on this icon to download National Geographic News's XML/RSS feed.

Get our news delivered directly to your desktop—free.
How to Use XML or RSS

National Geographic Daily News To-Go

Listen to your favorite National Geographic news daily, anytime, anywhere from your mobile phone. No wires or syncing. Download Stitcher free today.
Click here to get 12 months of National Geographic Magazine for $15.