Deep-Sea Fish Trap Sheds Light on Ocean's Slowest Denizens

<< Back to Page 1   Page 2 of 2

The question is why.

Intuition suggests the lack of food at ocean depth slows everything down to a state of quasi-hibernation, but that assumption appears wrong, Drazen said.

The fish captured in the trap have watery muscles, suggesting they don't swim much. And since they don't swim much, their metabolism is low.

He explained that in the deep, dark sea, sight distance for predators and prey is limited. A little shrimp, for example, only has to swim a few feet to escape the gape and eyesight of a rattail, a type of deep-sea fish. (Related pictures: "Weird New Animals From Antarctica's Deep Seas" [May 16, 2007].)

A surface-dwelling tuna, by contrast, may have to chase an anchovy for several hundred yards. Thus tuna and anchovies have bigger swimming muscles and higher metabolism, Drazen said.

"It really seems to be light that controls the metabolism of these animals and how they sense predators and prey," Drazen said.

James Childress is a marine biologist at the University of California at Santa Barbara who studies fish metabolism. About 25 years ago, he first connected metabolic rates to vision.

At the sea surface there is strong selective pressure for organisms to use visual information, he explained.

"That is, if they see a predator, to move quickly to get out of there. If they see prey, to move quickly to capture it," he said.

The deep sea, where there is little light, lacks the selective pressures for strong swimming muscles, he added.

Drazen's trap, Childress noted, is allowing scientists to measure for the first time the metabolism of animals that until now scientists were unable to recover.

"It's a terrific engineering thing," he said of the trap.

Aquarium Display

Ultimately, Drazen said, he'd like to use the trap to acclimate deep-sea fish to atmospheric pressure at sea level, like a diver in a decompression tank.

But acclimation is a huge challenge, Childress said. While the properties of certain body elements such as tissues and fats can be acclimated, proteins that trigger cell activity are genetically fixed and sometimes cease functioning completely.

Nevertheless, he said, the researchers should try, as it would allow scientists to build up a stock of deep-sea organisms to study at the surface.

Drazen suspects he'll be successful with certain fish that live up to 6,560 feet (2,000 meters) below the surface.

"If this is true," he said, "now we can have animals living in aquariums for the public to see or in aquariums for scientists to observe and study."

Free Email News Updates
Sign up for our Inside National Geographic newsletter. Every two weeks we'll send you our top stories and pictures (see sample).

<< Back to Page 1   Page 2 of 2


SOURCES AND RELATED WEB SITES

ADVERTISEMENT

NATIONAL GEOGRAPHIC'S PHOTO OF THE DAY

NEWS FEEDS     After installing a news reader, click on this icon to download National Geographic News's XML/RSS feed.   After installing a news reader, click on this icon to download National Geographic News's XML/RSS feed.

Get our news delivered directly to your desktop—free.
How to Use XML or RSS

National Geographic Daily News To-Go

Listen to your favorite National Geographic news daily, anytime, anywhere from your mobile phone. No wires or syncing. Download Stitcher free today.
Click here to get 12 months of National Geographic Magazine for $15.